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KINGFISH STRIATIONS AND THE KELVIN-HELMHOLTZ INSTABILITY: PART 1

by

James H. Hunter, Jr.

ABSTRACT

The role of the Kelvin-Helmholtz instability 1in
initiating the formation of the density striations observed
in the Kingfish fireball is examined. Two idealized models
are proposed for the velocity shear layer on the sides of
the fireball, each of which includes essential
characteristics of the Kingfish event insofar as the
development of Kelvin-Helmholtz instabilities is concerned.
A complete linear analysis is presented for each model.

I. INTRODUCTION

The photographic records of the Kingfish fireball reveal the presence of
regularly spaced striations aligned along the magnetic fields on the surface of
the fireball. The striations appear first, and grow most rapidly, on the sides
of the fireball. They appear dramatically at a well-established time after the
detonation. The approximate e-folding time for the instability is known.

Detailed numerical simulations of the rising Kingfish fireball show that,
when the striations appear, positive 1ions (principally 0+) outside the
fireball, but behind the shock, would be rigidly attached to the magnetic field
and therefore would slip past the regions on the fireball where the striations
are observed. Essentially, the slip speed would be that of the rising
fireball, U. Moreover, estimates show that the resulting shear layer would be
thin, having a thickness considerably less than the separation between adjacent
striations. The velocity shear and slip velocity would be greatest on the
sides of the fireball where the striations first appear. This suggests that
the striations may be caused (i.e., initiated) by a Kelvin-Helmholtz
instability. On morphological grounds, a Rayleigh-Taylor instability seems

1




less likely because that instability would be expected to grow most rapidly on
the top of the fireball where the fluid deceleration is greatest.

Our purpose in this report is to review selected aspects of linear Kelvin-
Helmholtz instability theory in the context of the Kingfish event. In
Section II, we formulate an idealized problem, which retains the essential
ingredients of the Kingfish event insofar as the development of Kelvin-
Helmholtz instabilities is concerned. In Sections III and IV, we consider
carefully two models, each of which can be analyzed in a straightforward
fashion without resorting to extensive numerical calculations. Al though

idealized, each of these models has a direct bearing on the problem at hand.

II., FORMULATION OF THE PROBLEM
In this section, we consider the Kelvin-Helmholtz instability (hereafter,
designated K-H instability) in a compressible, magnetized fluid. The ideal MHD

equations are

d

_pt= -.Y L] p! Py (1)
dy 82, 1
= = - + —) +_-_ (B .

P Weprg) v B DEYE )

2B

e Ix @ xB) , (3)

and
dp _ YgP dp
it ()

where p is the density, V the bulk velocity, B the magnetic field strength, P
the fluid pressure, and Yg the adiabatic index. The f vector represents
additional body forces per unit mass, and the convective derivative

d/dt = 3/3t+ V . y. Because the observed structures are relatively small
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compared with the fireball radius, the linear problem will be formulated 1in
Cartesian coordinates. In the following development, we adopt the conventional
notation of Chandrasekhar.l The physical situation is illustrated in Fig., 1.
In our problem, the undisturbed magnetic field, bulk velocity, and force
vectors are given by B = iB, U = iU(z), and f = -kf, where i, j, and k are unit
vectors iIn the x, y, and z directions respectively. The equilibrium condition
requires that D(p + B2/8n) = f, where D = d/dz. In formulating the idealized
problem, f will be zero, meaning that gradients are allowed only in U(z).
Therefore, in a formal sense, unperturbed pressure equilibrium will be imposed;
p + B2/8ﬂ = constant. In reality, gradients exist in P, B, and p, due to the
acceleration of the Earth”s gravity, and to dynamical forces associated with
the rising fireball. Therefore, to apply linear analysis to the Kingfish
problem, we will use model results to gain insight into the behaviors of
compressible K-H instabilities. In Section III we will examine idealized
models in which the undisturbed media are in pressure equilibrium.

The linearization of Equations (1)-(4) is straightforward and has been
outlined in some detail by Miura and Pritchett? (hereafter, designated by MP).
They Fourier analyze the linear, dependent variables. In our notation, this
analysis requires that any perturbed quantity £ = g7(z)expli(k;x+k,y+nt)].
When f = 0, their second-order eigenvalue equation for the total pressure

perturbation is p“* = p” + B « B“/47, which reduces to

Y 4

A
Uiz

- X

Y

Fig. 1. The coordinate system used in the calculations. Inhomogeneities occur
in the z direction only.




2
¢2gD (% pp~*) - [k? + k2 - _24’_2 prE=0 , (5)
¢ g (gc + VA)

where ¢ = (n + kIU) and g = 1 - k§V§/¢2. In Equation (5), the Alfvén speed,
VA’ and the adiabatic sound speed, ¢, in the undisturbed medium are defined by
VK = le(hnp) and ¢ = ng/p. In our problem, the Alfvén speed in the
relatively tenuous, slipping medium is much greater than either ¢ or U.
Consequently, the Mach number, m = U//szi'zf, is small, and the gas will
behave very nearly like an incompressible fluid. In the incompressible limit,
K-H instabilities are suppressed? if U < 2 Vp(k ¢« B)/(kyB). In the present
problem, in which U/VA <<'1, K-H instabilities can develop only if k is very
nearly orthogonal to B. Therefore, in the following development, we restrict
our attention to the most favorable (transverse) class of models in which the
wave vectors are directed parallel to the undisturbed flows; k = }kl. (We
recall that the Kingfish striations, which correspond to density maxima, are
aligned parallel to B, an observation which would follow if the transverse case
applies.)

In the transverse case the linear equations describing our problem are

$p % = :;ﬂ 485 - kycZou” + 1cobu” (6)

ppu” = <k;p"* + 1 p (DUIw" , (7)

pow = iDp“* | (8)
and

By = -kjBu” + 1BDWw" . (9)

In these equations, u” and w” are the velocity perturbations in the x and z
directions respectively, and p”* = p” + (B/An)B; = czp‘ + (B/Aw)B;. Equa tions
(6) and (9) may be combined to give the result

4




pp * = —klvzpu’ + 1V2pr' , (10)

where V¢ = Vi + c2. Equations (7), (&, and (10) describe forms exactly the
same as their hydrodynamic counterparts if the sound speed is replaced by V.
Thus, the transverse hydromagnetic problem is formally equivalent to a
hydrodynamic problem with k = ik;. However, the magnetized medium is less

conpressible due to the presence of magnetlc pressure.

We eliminate variables in the above system to obtain eigenvalue equations

for both p"* and w~. The equation for p”* reads

, 2ky(DU)D 2
o - L 4 k2] prr=0 (11)
® V2

exactly the MP result when k; = k3 = 0. “he eigenvalue equation for w” is more

difficult to derive; our result is

ey 2 2
24k, (DU) 2 ky(oet) 2k 7(DU)
{DZ-_Z ___2_D+[_¢’_2_-k{- L + 21 MNw =0 . (12)
(62 - kiv2) v i (42 - kdv2)
To recover the incompressible limi:, we let V + o, In that limit,
Equation (12) reduces to
(402 - k}) - k(2] w* =0 , (13)

exactly Chandrasekhar”s result! for an incompressible fluid in the absence of
unperturbed density gradients. It should be noted that Equations (11) and (12)
have different forms. Generally speaking, the eigenvalue equations will be
different for the various perturbed quantities when gradients are present in
the undisturbed medium. If U is constant, Equations (11) and (12) reduce to

the identical forms:



2
(02 - k2 + 2 )(p7*,u) = 0 (14)

ve

III. THE GENERALIZED GERWIN PROBLEM

In a seminal paper, Gerwin: considered the development of K-H

instabilities at the interface between two compressible isotropic fluids having

identical undisturbed densities and pressures, which flow relative to each

other at a constant velocity parallel tc the interface. In this section, we

generalize Gerwin”s problem to include cases in which the densities in the

The physical problem is illustrated im Fig. 2. We adopt

media are unequal.

the convention that o < pj. If +the media are 1in approximate pressure

equilibrium, plv% = DZV%'

In each medium, the total
either canstant or zero, the ¢”s are constant in
both media. Consequently, the solutions of Equation (14) are of the form
expt{(qz), where q2 - k% + ¢2/V2 = 0. It (a+ kLU)Z/(k%V%) and n2/(k%vg) <1,

pressure perturbation must satisfy

Equation (l14). Since U {is

then

(n + k U)Z 1/2
L (15a)

SR N ™ aa ’
k1vy

Z Medium 1
Y = n+ky U
V=iU
V2=VA12+ C12=V12
:
Medium 2
Y P-= Pz ¢ a N
V=0
V2= VA22 ; C22 =\,22

Fig. 2. The generalized Gerwin problem.



and
2
9 = ) (1 - — . (15b)
v

The signs associated with 1,2 follow from the requirement that the
o 2 2y2

perturbations must vanish as z + t=, [If ¢1’2/(k1V1’2) > 0, then the q; ,

values will be imaginary. In that event, only outgoing waves can be allowed as

z +» to, Such cases do not concern us in the present application.]

By definition, the Llinear 2z velocity, w*, and z displacement, z”, are

related by

1¢22=w . (16)
Combining Equations (8) and (16), we obtain the expression

p$lz” = Dp~* = qp"* , (17)

a result that holds for both regions 1 and 2. Hence, at the interface of these

respective regions, we may write

p1621;s = areit (18a)
and

P263231 = a3t (18b)

where subscript 1 denotes the interface. At the interface, the continuity

conditions are




213 = 234 (19a)

and

pit = P2t . (19b)

Equations (l5a,b), (18a,b), and (19a,b) may be combined, along with the
definitions of $1,2> to yleld the desired dispersion relation

pan? -p1(n +kq0)?
3 = 3 . (20)
[1 . n ]1/2 . (n + kyU) 1/2
k3v2 ) 242
1Y2 (k{V])

We note 1in passing that the general dispersion relation for the hydrodynamic
version of this problem reads

p o0’ -p1(n + kUcoss)? (1)
= ’
L . _n 12 - (n + kUcos8)2,1/2
(k2c2) (k2c2)
2 1

where 6 is the angle between the wave vector k = ik; + jk, and U. Thus, to
recover the general hydrodynamic result, we replace V1,2 with 1,29 k, with k,
and U with Ucos® in Equation (20).

When we define the dimensionless quantities x = n/(k;Vy), a = p;/pg,
b = (V1/V2)2, and Mach number m = U/Vl, Equation (20) becomes

a(x + m)2 -x2

= . (22)
[1 - (x+ m)z]]'/2 (1 - bxz)l'/2




Equation (22) is of 6th order in x. After squaring both sides, and rearranging

terms, we obtain

(1 - a2b)x® + 2m(1 - 2a2b)xd + (m? - 6abm® + a2 - 1)x%

+ 4ma2(1 - bmz)x3 - mzaz(bm2 - 6)x2 + 4a2md3x + a2nt =0 . (23)

Equation (23) has only one complex conjugate pair of roots, which also
satisfies Equation (22). These roots, which represent the K-H modes, may be
written as x = x,. + ixy. The growing mode has the negative sign, and its
growth rate is y = x;k,V; = X;k,(U/m).

In the incompressible limit (m = 0), the roots of Equation (20) are

n= -aklU + i Ya(l - a)klU , (24)

where a = py/(py + p3). The ratio of oscillatory frequency, w, to growth rate
Yy is w/y = (91/92)1/2' The most rapid growth occurs when o = 1/2, correspond-
ing toa =1, In this case, Equation (20) can be expanded easily in powers of
m to gauge the influence of compressibility on the growth rates. Thus, we

obtain

2
- - U U m

It is evident that compressibility reduces the unstable growth rates, which 1is
to be expected on physical grounds. When m = 0.0l, the complex growth rate
calculated from Equation (25) is didentical to the corresponding numerical
solution of Equation (23) to nine significant figures; when m = 0.20, the
results agree to four significant figures; when m = 1.00, the growth rate
predicted by Equation (25) is low by ~7.5%.

The growth rates of the unstable K-H modes are shown in Fig. 3 for
Gerwin“s case; a = b = 1, where we have defined n = *iy + w. These solutions
can be derived analytically because Equation (23) reduces to a quintic, having
one root X5 = -m/2. The remaining quartic equation can be solved
algebraically. As noted by Gerwin,3 K-H instabilities can occur only when
m < /g. As p1/p2 diminishes, the K-H growth rates usually become smaller.

9




Moreover, unless V2/V2 is very large, the range of m values over which these
instabilities can arise shrinks as well. This behavior 1is 1illustrated 1in
Fig. 4. The curves represent models for which the undisturbed media are
constrained by the condition plv% = pZV%. If Vi/c2 > 1, czlvg > 1, or
Yg = 2, this condition amounts to requiring that regions 1 and 2 be in pressure
equilibrium. [Strictly speaking, pressure equilibrium requires that
p]_(c%/Yg + Vil/Z) = pz(c%/Yg + VKZ/Z).] Cases conforming to the unphysical
condition, P1Vy = ppV,y, are depicted in Fig. 5. If this condition of "momentum
equilibrium" is met, the growth rates remain relatively large as p1/py becomes
small. 1In physical terms, the ratio of the '"thermal" energy density of the
fluid in region 1 to that in region 2 = V1/V2 = pz/pl. Consequently, ample
energy is always available to drive the K-H instabilities. Figure 6 shows the
normalized maximum rates (and corresponding Mach numbers)' for '"pressure
equilibrium" models (plv% = pZV%) as a function of density contrast. Clearly,
the growth rates of K-H instabilities diminish as the density contrast
increases for reasonable physical models. Unlike the case for small m [in
which w/y = (p1/p2)1/2], the ratios of the corresponding oscillatory

frequencies to these maximum growth rates are m/ym ~ 1,

IV. INCOMPRESSIBLE MODELS WITH LINEAR SHEAR LAYERS

While the models of Section III have the virtue of including
compressibility, they suffer from the shortcoming of imposing a velocity
discontinuity between regions 1 and 2. Since shear viscosity was not iIncluded
in these models, the shorter the Fourier wavelength, the more rapid will be the
K-H growth rate. However, if K-~H 1instabilities are responsible for the
Kingfish striations, the observations show that a preferred wavelength is
excited. As is the case when shear viscosity is present, the existence of a
finite shear layer in a velocity profile will select a favored wavelength for
which the K-H growth rate is a maximum, From a physical viewpoint, shear
viscosity and velocity shear are related. If a discontinuous velocity profile
is imposed upon a viscous fluid, then subsequently a shear layer will develop
in the fluid through the action of shear viscosity. (Indeed, a linear velocity
profile can be maintained in the presence of any constant coefficient of shear
viscosity.)

For models having uniform, undisturbed densities, both Mp2 and

Chandrasekhar! have shown that Incompressible K-H instabilities experience a

10
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kVy
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%%.0 1.0 20 f 3.0
" V8
Fig. 3. Unstable growth rates in the Gerwin problem; p1/p2 = 1. The dashed
line shows the incompressible growth rate, Y/(klvl) = m/2.
00T T T T 1T T T T T [ T T 1T T [T T3
[ a=10""! ]
0.20 — —
b —
Y [ .
kY, [~ _
0.10— -
[ a=1072 ]
0.00 Lot e o b rale b
0.0 0.5 1.0 15
w

Fig. 4. Unstable growth rates Iin the generalized Gerwin problem when
p1/09 =10"!, 1072, and the media are in "pressure equilibrium"

(o1v} = 0,v)).
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maximum growth rate when kja ~ 1, where a is the characteristic thickness of
the shear layer. When compressibility is included, MP find that the optimal
value of kla decreases with increasing Mach number. In their models, which
employed a hyperbolic tangent velocity profile, K-H instabilities can occur
only if m < 2. (Recall that, for the discontinuous velocity profile, m < y8.)
As we would expect, the MP growth rates become smaller as m-1 diminishes (i.e.,
as compressibility becomes more important). Unfortunately, in the present
context, the MP models do not allow for density stratification. However, a
model that includes both velocity shear and density layering is illustrated in
Fig. 7.

We will consider only the incompressible case because (1) the growth rates
are greatest in that 1limit and (2) the incompressible problem can be solved
exactly and straightforwardly. Al though Chandrasekhar! does not treat the
density layering 1in enough detail for our application, he does provide an
excellent outline of the solution to this problem (p. 487). For all three
regions in Fig. 7, the differential equation for w” simplifies to

(n2 - k%)w’ =0 . (26)

Therefore, the solutions in the respective regions are

~k12z
wj=Ae 1 , (27a)

Y4
A
Region 1: P=P1: U=U= Constant

X (Shear Laxer) Region 2: p=p,, U=2Uo%

/ Region 3: p=p,, U* U= Constant

Fig. 7. The three-layer model with linear velocity shear.
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z

Wy = Ay e + B, e ’ (27v)
and

w;=Be , (27¢)

where A, A,, B,, and B are constants. At the interface (i) between regions 1
and 2, the following conditionl holds:

U
- » o »

Moreover, the displacements must be continuous at the interface;

-1 w3 -1 w
11 21
27, = = 72, = . (29)
U T+ kU, 2 Ta+ kU,)
Consequently, at the interface,

Using Eqs. (27a), (27b), (28), and (30), we obtain

20, P1
[— -« (@ + kyU,)) - —(n + k,;U_)]
1% 1%
— @ n - . (31)
Bo 20,

[_;_ + (n + k,0.) - _::—: (n + k,U.)]

The interface between regions 2 and 3 may be treated similarly, yielding

14




[__2 + (n - kon) + Eg {(n - kon)?

B ~-k,a a
LS L, 2 . (32)
Ao 2U, P3 \
[T - (n - kgUg) + = (- kgU) ]
2

We define the following dimensionless guantities: 1) = p1/03, T3 = p3/p9s

xk = kja, and y = n/k;U,. In these variables, Equations (31) and (32) may be

combined to form the quadratic equation

[(1 + )1 +13) - (1 - 1)L - ry. e 2¥ly? --é(r3 - ) - e )y

2 2 2 L2 -2k
-5 -1 - . - - (L1 S+ 1 - =0 . (33)
[& TG - L s rg) - C L (L - rg)e

For the uniform medium (rl =1, =1,

y = 1 [(x - 1)2 -e°2K]1/2 (34)

a result originally due to Rayleigh (see¢ reference 1). In this case, 1if

instabilities exist they contain no oscillatory component in the calculational

Instabilities exist if e‘ZK > (¢ = 1), implying that k < Ke = 1.2784635.
three - layer problem

frame.

In order to demonstrate the connection between this

and the incompressible, discontinuous case, we let «x » 0 in Equation (33),

meaning that the shear layer {is arhitrarily thin in comparison with the

perturbation wavelength. The resulting equation is

2 2 (r3 - t‘l) ( )
y- - + 1 =0 . 35
(r3 + 1)
Letting 1) = rgl, Equation (35) may be rewritten as
(36)

y2 - 2(1 - 20)+1 =0 ,
15



where

a = Dl/(pl + 03)
Hence,
y = (1 - 2a) + 2iaV/2 STT Q) . (37)

With respect to a rest frame in medium 3 (the fireball),

(38)

n = -aklU + 1/a{l - a) klU s

where U = Ul - Uz = 2U,. This expression i{s identical with Eq. (24), the

complex growth rate for an incompressible fluid with velocity discontinuity U.

The growth rates for the constant density case with linear velocity shear
are shown in Fig. 8. The quantity y;(«) is the magnitude of the imaginary part

frequency v. Also shown in Fig. 8 is the more

Our solutions for this

of dimensionless angular
conventional, normalized growth rate,? vya/U = y(k)x/2.
MP solutions for the hyperbolic tangent velocity

quantity are close to the
of ya/U for four different

profile (shown in their Fig. 3). Graphs

representative models are shown in Figs. 9-12. The dashed lines on these

figures show the incompressible, discontinuous growth rates. As was the case

with our previous models, the growth rates diminish rapidly with increasing

Also, the wavenumber at which the growth 1is most rapid

density contrast.
Figure 13 depicts the

decreases slowly with increasing density contrast.

maximum growth rate, as well as the corresponding values of x, as a function of

total density contrast, p3/p;, for modeis having p;/p, = pp/p3. With respect

to a rest frame in region 3, the frequencies of oscillation are comparable to

their corresponding maximum growth rates.

16
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Fig. 8. Unstable growth rates in the three-~layer problem when I, =13 = 1.
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Fig. 9. Unstable growth rates in the three-layer problem when T, = 1/2 and r3
= 2,
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Fig. 10. Unstable growth rates in the three-layer problem when I = 10'1 and Ty
= 10.
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Fig. 11. Unstable growth rates in the three-layer problem when r, = 10'2 and L)
= 100.
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0.000
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Fig. 12. Unstable growth rates in the three-layer problem when T = 10-3 and I,
= 10,
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